どうやら、ガチャを1回やった場合に「6種類のカードのどれかが必ず得られる」のではなく、その他のカードも含まれているらしい。確率については非公開(これで本当に良いのかという気もするが、いろいろ調べても景品表示法等には抵触しないようだ)。
とりあえず試算のために、twitterでもらった「1回の試行で6種類のどれかが得られる確率は12%くらい」というデータに基づいて話を進める。もし12%=0.12の中で6種類が均等であれば、目的のカードが得られる確率はそれぞれ2%=0.02となる。
- 6種類のうち、最初の1種類が得られるまでの試行回数は、パラメータ0.12の幾何分布に従い、その平均回数は1/0.12≒8.3回である。
- 1種類めのカードが得られた後、2種類めの未所持カードが得られるまでの試行回数は、パラメータ0.10の幾何分布に従い、その平均回数は1/0.10=10回である。
- 以下同文で、6種類すべてを最低1枚ずつ得るまでの平均試行回数は、1/0.12+1/0.10+1/0.08+1/0.06+1/0.04+1.0.02=122.5回。
0 件のコメント:
コメントを投稿